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LETTER TO THE EDITOR 

On conservation laws and zero-curvature representations of 
the LiouviIIe equation 
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InstiNte of Physics, Academy of Sciences, F Skaryna Avenue 68, Minsk 72. Belarus 

Received 23 December I993 

Abstract Applying the first Noether theorem to the Liowille equation ury = expn, we find 
dl (namely, a wntinuum 00 non-trivial conservation laws of this equation. Then we find five 
new zero-mvature representations of the Liouville equation (by 2 x2  tnreless matrices) which 
wntain, respectively, I ,  1, 2, 2 and 3 essential parameters. Finally, we show that all known 
Z~TO-CUNLI~RE representarions of the Liouville equation are equivalent (in a definite sense) to 
matrices of conservation laws. 

Recently, Wu et al [l] indicated a new interesting property of the Liouville equation 

They considered two d@erent zero-curvature Fepresentations (by 2 x 2 and 3 x 3 traceless 
matrices) of (1) and derived thus two diferenr infinite sequences of conservation laws 
for the Liouville equation. Conserved quantities were in involution within each of the 
two sequences, whereas the involution between the sequences was absent. Taking into 
account the result of [l] as well as that the two-dimensional Liouville field theory arises 
naturally at quantization bf bosonic strings in all dimensions except 26 121 and that a 
quantum treatment of the Liouville equation employs its Lax pair i d  conserved quantities 
131, we see reasons for paying more attention to conservation laws and zero-curvame 
representations of (1). In  this letter, we will find all conservation laws of the Liouville 
equation. We will see that (1) has a continuum of non-trivial conserved densities. Then we 
will find five new zero-curvature representations of the Liouville equation (by 2 x 2 traceless 
matrices) which contain, respectively, I, 1. 2, 2 and 3 essential parameters. Finally, we 
will 'indicate gauge transformations which frivivialize (in a definite sense) all known zero- 
curvature representations of (1). These results, however, should not evoke surprise, because 
the Liouville equation is very unusual in itself and differs from other integrable nonlinear 
equations in many respects. Indeed, (1) is known to possess the explicit general solution 
U = ln[2$x@y($ + @)-*I with arbitrary $ ( x )  and @(y), a non-commutative algebra of 
generalized symmetries with uncountable (continual) basis [4], and 4 continual classes of 
Backlund autotransformations [SI. 

Since the Liouville equation (1) is a normal Euler-Langrange system [6] with 
Lagrangian L = fuxuy + exp U, we can take the opportunity of finding ull its conservation 
laws by means of the first Noether theorem. We will use the Noether theorem in Olver's 
interpretation [6]. ' AI1 generalized symmetries of (1) are known (in the form of their 
evolutionary representatives) [4,7]: 

(2) 
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uxy = exp U. (1) 

ue = (4 + ux)a [x .  U1 + (Dy fuy)b[y, wl 
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where us = au/as,  E is a symmetry group parameter, Ox and Dy are the total derivatives 
with respect to x and y. a&. U] = a(x, U, U].. .., um). b [y ,  w] = b(y,  w, wl, _. ., wn), 
U = uxx - - z U x 3  U* 
functions a and b and orders m and n are arbitrary. For employing the Noether theorem, 
we must find which of generalized symmetries (2) are variational symmetries [6]. Thus, all 
a and b must be determined such that L,'= aL/ae, calculated in accordance with (2). is a 
total divergence in x ,  y, U and derivatives of U. 

Theorem I. All variational symmetries of Lagrangian L = iuxuy + exp U are 

1 2  1 2  0:. (k = 1, 2 , .  ..), w = uYy - j u Y .  wk = D$w (k = 1,2, ... ), 

where functions p [ x ,  U] = p ( x ,  U, V I , .  . . , ut) andq[y, w] = q(y ,  w, W I ,  . . . , wj) and orders 
i and j are arbitrary, E is the Euler operator, and index U or w shows that E is taken with 
respect to U or w (but not to U!). 

Sketch of Proof. L, is a total divergence if, and only if, E&,) = 0 (for any function U). 
This is equivalent to 

Eu(uya[xT VI + W ~ U [ Y ,  wl) = 0 (4) 

where uy = uxzy - uxuxy and w, = uxyy - uyuxy. Differentiate (4) with respect to 
am+su/a~m+%y and get - I]aa/a,u, = 0, i.e. m is even, m = 2i, i = 0.1.2,. . .. 
Differentiate (4) by a"+4u/ax2m+4 and get aza/au: = 0 if m > 0. Differentiate (4) by 
a2m+2u/ax"+2 and get a2a/aumavm-, = 0. And SO on, up to a2a/au,avi+l = 0, i = Im. 
Take evident identity E.(uyE,(p[x, U])) = 0 valid for arbitrmy function p ( x ,  U, VI,. . . , ut) 
and order i ,  subtract this identity from (4), choose i = i m  and a2p/auf = (-l)'aa/au,, 
and find that (4) is satisfied with functions Z[x, U] and b [ y ,  w], Z = a-E&), aci/au, = 0. 
Induction by m down to m = 0 proves a = E,@[x, U]). Analogously, b = Ew(q[y, w]). 0 

Before proceeding to conservation laws, let us consider variational symmetries (3) from 
the standpoint of the following apparent contradiction. On the other hand, (1) is evidently 
a normal system and must fall under the first Noether theorem therefore [6]. On the other 
hand, variational symmetries (3) are numbed by two arbitrary functions, therefore (1) 
should fall under the second Noether theorem which describes under-detennined systems 
[6]. Which of the two statements is correct? Undoubtedly, the first one. Close examination 
of proof [6] of the second Noether theorem shows that applicability of the theorem demands 
dependence of variational symmetries on an arbitrary function of all independent variables. 
Since x and y are separated in (3), the arbitrariness required for variational symmetries of 
under-determined systems is not achieved, and the Liouville equation 'remains' a normal 
system. Therefore non-trivial variational symmetries (3) generate non-trivial conservation 
laws. 

I 

Theorem 2. Up to the equivalence [6], all conservation laws of (1) are 

D y P ( X ,  U, V I r  . . . , U 0  + D A Y ,  w, W I ,  .. . , W/) = 0 

where functions p and 4 and orders i and j are arbitrary. 
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Sketch of proof. Take conservation laws in characteristic form fE.(L) = 0, replace 
characteristic f by the right-hand side of (3) due to the first Noether theorem, and represent 
the result as Dyp  + D,q + D,g + Dxh = 0, where g and h are trivial, g = 0 and h = 0 

0 

It is not surprising that (1) has conservation laws (3, because U, = 0 and w, = 0 for all 
solutions U of (1). However, theorem 2 tells us more, namely, that every conservation law 
of the Liouville equation can be brought into form (5) hy adding trivial conservation laws 
of the first and second kinds [6] to it. For example, D,(u:) + DZ(-2expu) = 0 does not 
belong to (5) by itself, but it is equivalent to DY(-2u, +U:) + 4 0  = 0. 

Proceeding to zero-curvature representations, let us recall the definition and main 
properties of them [SI. Consider the over-determined system of two linear equations 
9, + A9 = 0 and @, + B @  = 0, where @(x,  y) is a k-component column, A and 
B are k x k matrix functions of independent variables x and y, dependent variables U and 
derivatives of U. This linear system is compatibte if and only if 

for all U satisfying (1). 

D Y A  - D x B  - [A, B] 0 (6) 

where square brackets denote the commutator. Compatibility condition (6) is said to 
represent a nonlinear system in U if all solutions U of the system satisfy (6). If one interprets 
matrices A and B as components of a connection and defines covariant derivatives of 
vectors @ as Vx@ = (9 +A)@ and V,@ = ( D , + B ) @ ,  then (6) is nothing but condition 
R = 0 for curvature R defined as R = [V,, V,] = D,A - D,B - [A, B]. Localized 
transformations of vectors @' = S@ (S are k x k matrix functions of x, y. U and derivatives 
of U, det S # 0) generate gauge transformations of matrices A and B 

A' = SAS-' - (D,S)S-' B' = SBS-' - (D,S)S-' U) 
and tensor transformations of the left-hand side of (6) R' = SRS-'. Two zero-curvature 
representations, related by (7), should be considered BS equivalent. One more equivalence 
is A' = -AT, B' = -BT and R' = -RT. where T denotes transposing. Only non- 
commuting traceless A and B should be considered, because (6) is a matrix of conservation 
laws when [A, B] = 0, and (6) splits into conservation law DY(trA) - D,(trB) = 0 plus 
(6) with new traceless = A - k-' trA and B = B - k-' trB (tr denotes the trace). It 
is generally believed that only integrable systems admit non-commutative representations 
(6) where A and B contain an essential ('spectral') parameter which cannot be removed 
('gauged out') by (7). 

Though the problem of finding all zem-curvature representations of the Liouville 
equation is very attractive, we were unable to solve it in general form. However, the 
following special solution of the problem adds much to known unusual propexties of (1). 

Theorem 3. Up to equivalence A' = SAS-' and B' = SBS-' with any constant matrix 
S, the following 5 pairs (A, B) exhaust all zero-curvature representations (6) of (1) by 
2 x 2 traceless non-commuting matrices A@,) and B(u):  

0 aexp(-u) 
A = ( ; :  - l u )  2 x  B=(, exp u 0 

01 

expu 0 A =  ( 



L128 Letter to the Editor 

expu 0 

where 01, j? and y are arbitrary (complex) constants, 01 # 0. 

Sketch of proof. Take A = A(u,) and B = B(u) in (6). replace uzy by exp U, and get 
equality u;laA/au,-exp(-u)aB/au-[rr;lA, exp(-u)B] = 0 which must be an identity 
in U since U is any solution of (1). Take a2/auauz of the identity, get [M, NI = 0, where 
M = a(u;'A)/au, and N = a[exp(-u)Bl/au, and consider 3 possibilities: (i) M = 0, 

0 

This abundance of zero-curvature representations and free parameters cannot be reduced by 
gauge transformations (7). 

Theorem 4. No two of zero-curvature representations listed in (SXlZ), neither coming 
from one of classes (8)-(12) at two different choices of parameters, nor coming from two 
different classes of (SXl2)  at any choice of parameters in each case, are related by gauge 
uansformations (7). 

Sketch of pmof. Use quantities which are invariant under (7). Calculate R, V,R and 
VyR for (8)-(12), where V,R = D x R +  [A, RI and VIR = D y R +  [ B ,  RI. Invariants 
det R, det(V,R) and det(V,R) prove the theorem except that 01 is essential in (9) and j? is 
essential in (11). Then find that V,R = cR for (9) and [R, V,R] = d[R, VyR] for ( l l ) ,  

0 

Nevertheless, gauge transformations (7) can reveal the origin of too numerous zero- 
curvature representations (SHlZ) of the Liouville equation. Each of pairs (A, B) (8)-(12) 
can be transformed by (7) into a pair (A', B') such that either A' or E' is zero for all 
solutlons U of (1). Indeed, let us look at the following list of transforming matrices S and 
resultant matrices A' and B', the correspondence being (n) + (n + 5) ,  n = 8,9, . . . , 12: 

(ii) N = 0, and (iii) M = r (ux)C ,  N = s(u)C, matrix C is constant, C # 0. 

where invariant c contains 01 and invariant d contains j?, 

B ' = ( U Z  0 -a2 O ) 
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B ' q  0 --a2 O ) 
where z = expu - uxy, and U and w are the same as in (2). We see that A' = 0 in 
(13) and B' = 0 in (14K17) for all U satisfying (1). It is evident that zero-curvature 
representation (6) remains valid when we replace pair (A, B) by pair (A + &, B + BO) 
with any matrices A0 and BO such that A0 = 0 and BO = 0 for all solutions U. This kind 
of equivalence between zero-curvature representations resembles the procedure of adding 
trivial conservation laws of the first kind [6], whereas gauge transformations (7) resemble 
adding trivial conservation laws of the second kind (null divergences) [6]. Thus, all zero- 
curvature representations from theorem 3 are equivalent to commutative ones DJ3' = 0 or 
DyA' = 0 which are matrices of conservation laws of (I), and the abundance of (8H12) 
should not therefore surprise. The well known 2 x 2 zero-curvature representation of (1) 
with matrix A of AKNS-type [1,9] belongs to our class (10) at a = 4 (up to equivalence 
(7) with constant S). As for the following 3 x 3 pair [lJ 

A=(-%' a E 0 $U1 .") B=(O 0 0  0 O )  0 (18) 
1 0 0 4 d e x p u  

we see the same picture as above: 

1 0 $- lux  0 a -;a-'. 0 0 $a-Iz 
s=(; ; ; ) AI=(." 8 a 0 ) B'=(; 8 ; ) 

(1% 

so that nothing contradicts the following conjecture. 

Conjecture. Every zero-curvature representation (6) of the Liouville equation (1) is 
equivalent to commutative one DyP - Ox& = 0, [ P , Q ]  = 0, where P = 
P(x, U, U I ,  . . . , U:) and Q = Q(y,  tu, wl .  .. . , w j ) ,  the equivalence being P = SAS-' - 
(DXS)S-' + A0 and Q = SBS-' - (DYS)S-l +BO, where & = 0 and BO = 0 for all 
soiutions U of (1). 

This work was supported by Grant @2-023 of the Fund for Fundamental Research, 
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